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A model of directed percolation processes with colors and flavors that is equi-
valent to a population model with many species near their extinction thresholds
is presented. We use renormalized field theory and demonstrate that all renor-
malizations needed for the calculation of the universal scaling behavior near the
multicritical point can be gained from the one-species Gribov process (Reggeon
field theory). In addition this universal model shows an instability that generi-
cally leads to a total asymmetry between each pair of species of a cooperative
society, and finally to unidirectionality of the interspecies couplings. It is shown
that in general the universal multicritical properties of unidirectionally coupled
directed percolation processes with linear coupling can also be described by the
model. Consequently the crossover exponent describing the scaling of the linear
coupling parameters is given by F=1 to all orders of the perturbation expan-
sion. As an example of unidirectionally coupled directed percolation, we discuss
the population dynamics of the tournaments of three species with colors of
equal flavor.

KEY WORDS: Multicolored directed percolation; field-theoretic renormaliza-
tion group; stochastic population dynamics.

I. INTRODUCTION

Nonequilibrium processes, their stationary states and their phase transi-
tions have been of considerable interest in natural science as well as in
medicine and sociology for many years. Here we are interested in processes
that can be modelled by growth and decay of populations with spatially
local interaction rules. The transition between survival and extinction of a
population is a nonequilibrium continuous phase transition phenomenon
and is characterized by universal scaling laws. It is well known that also for



systems far from equilibrium the concept of universality classes with
respect to their critical properties in the vicinity of a continuous phase
transition is applicable. For the description of transitions in systems that
show active and absorbing inactive states, percolation models play an
outstanding role. Some years ago it was conjectured (1, 2) that Markovian
growth models with one-component order parameters displaying a transi-
tion into an absorbing state in the absence of any special conservation law
generically belong to the universality class of directed percolation (DP).
Besides DP (3–5) this universality class includes e.g., Reggeon field theory
(RFT), (6–8) the contact process, (9–11) certain cellular automata (12) and some
catalysis models (13, 14) (for a recent review of DP processes see ref. 15).

Despite the fact that a large variety of different models belong to the
DP universality class, there is still no experiment where the critical behavior
of DP was seen. (16) In a recent paper, (17) Hinrichsen compares suggested
experiments and discusses possible reasons why the observation of DP cri-
tical exponents is obscured or even impossible. One of these reasons might
be that the basic feature of the DP class, the existence of an absorbing
state, is quite difficult to realize in nature. Small fluctuations will always
affect this state and may be strong enough to soften the transition like a
small particle source, which works as an external field. (18) Another reason
might be the influence of spatial quenched disorder which is abundant in
reality. We have shown (19) that in contrast to equilibrium systems, the cri-
tical scaling properties of DP processes are not only altered by frozen ran-
domness, but fully destroyed.

For the analytic description of universal behavior near a critical
nonequilibrium transition, it is often useful to model the universality class
by mesoscopic stochastic processes involving the order parameter and other
relevant fields. In case of the DP class a representation by the Langevin
equation for the time-development of the particle density, the Gribov
process (the stochastic version of the so-called Schlögl model (20)), is
appropriate. (1) The name Gribov process was coined by Grassberger who
showed that RFT is a Markov process in disguise rather than a quantum
theory. (8) On the level of a formulation of stochastic processes by means of
path integrals, there is superficially no difference between RFT and the
Gribov process. (1, 4, 8) However, RFT uses creation and annihilation opera-
tors for particles as the principal fields in contrast to the particle density
and its conjugate response field used in the Gribov process. Microscopi-
cally the RFT-description of DP starts with special reactions between dif-
fusing individuals on a given d-dimensional lattice such as birth:
XQX+X, competition: X+XQX, and death: XQ0. These reactions are
represented by a master equation that is mapped onto a second-quantized
bosonic operator representation, which is in turn mapped onto a bosonic
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field theory using the continuum limit. (21, 22) At the critical point the rates of
birth and death have to balance to yield a vanishing overall production rate
of individuals.

In the recent years it became clear that spontaneous single particle
decay with a nonvanishing death rate is, besides the existence of an absorbing
state, a further necessary condition to put multiparticle reaction-diffusion
processes into a percolation universality class. Nonvanishing autocatalytic
creation processes correlate particles in local clusters embedded in the
vacuum. Then, near criticality, the subsequent uncorrelated spontaneous
decay produces the random percolation pattern consisting of the typical
selfsimilar patchwork of a dense particle distribution as seen in so many
simulation pictures (see e.g., ref. 15). A fluctuating density description is here
applicable. (1, 23) In contrast, the replacement of the single particle decay by a
two particle reaction X+XQ0 separates particles and leads to strong
anticorrelations. (24) The pictures seen in corresponding simulations consist
of separated lonely wanderers that only sporadically interact and no clus-
tering of particles sets in. A naive stochastic density description for the
fundamental field fails in this case. One has to resort to the bosonic
creation-annihilation operator formulation. (24) As Cardy and Täuber (25)

showed: a nonvanishing birth rate leads then to compact growth well
described by mean field theory. Only for spatial dimensions d [ 2, where
Brownian pathes have a probability of return equal to one, the two-particle
annihilation process is efficient enough to produce an effective one-particle
decay rate from combined branching and annihilation. One finds then
indeed a DP transition from an absorbing to an active phase at a non-zero
positive birth rate. A formal proof of the equivalence of the density
description with the bosonic creation-annihilation operator description is
given in Appendix D.

When studying processes belonging to the DP universality class,
one considers usually only one species of particles. In mathematical
biology (26, 27) on the other hand, processes which comprise several distinct
species (henceforth labelled by different colors) are of prime interest. Also,
models of this type are of relevance for surface growth. (28) In this paper we
study such multicolored directed percolation processes (MDP) by means of
the Gribov process for several species. A brief account of this work has
been presented in ref. 29. The paper presents a renormalized field theory of
this process in detail. In our approach the species are grouped into several
flavor classes, so that all species in a flavor class have the same diffusion
constants and intraspecies interactions. It results a symmetry under per-
mutations of the species within a flavor class. One of the key results of our
work is the instability of this color-symmetry if interspecies interactions are
introduced.
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The plan of presentation is the following: In the next chapter we
introduce the model and define its renormalization and the one-loop cal-
culation in the third chapter. In Chapter IV, we present the general
renormalization group analysis and find the asymptotic scaling behavior to
one-loop order. In Chapter V, we include the two-loop results of the
appendices and show the crossover of the couplings between the different
species to unidirectionality. In Chapter VI, we present our considerations
on symmetries and the general fixed point properties of the model. We
show that the permutation symmetry of a multicolored process is sponta-
neously broken. In Chapter VII, we show that the universal multicritical
features of a recently introduced model of unidirectional coupled directed
percolation processes (UCDP) by Täuber et al., (30) which contains an addi-
tional linear coupling between the species, is completely described by the
MDP class. In Chapter IX we show that the asymptotic unidirectionality of
MDP can be described in a concise fashion by tournaments. We give
an application to biomathematics. In an epilogue we resume the results
and give an outlook. Four appendices present technical details, e.g., the
e-expansion of the DP-exponents, known for a long time, but as yet
unpublished.

II. THE MODEL

The mesoscopic description of the dynamics of physical systems is
based on a correct choice of the complete set of fundamental slowly-
developing fields. In general these are the order parameter densities and the
densities of conserved quantities. As we have argued in the introduction,
the multispecies processes under consideration are completely described by
the particle densities n(x, t)=(n1(x, t), n2(x, t), ...) of the percolating
colored and flavored individuals. We assume that there does not exist any
conservation law.

Next one has to find out the general form of the stochastic equations
of motions of the fundamental fields as timelocal (Markovian) Langevin
equations. These Langevin equations have to respect symmetries and
general principles characterizing the universality class under consideration.
The MDP-class is characterized by the following four principles:

1. Errorfree self-reproduction (‘‘birth’’) and spontaneous annihilation
(‘‘death’’) of individuals. The rates for birth and death may be different for
each species.

2. Interaction between the individuals (‘‘competition,’’ ‘‘saturation’’)
with color-dependent couplings.
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3. Diffusion (‘‘motion,’’ ‘‘spreading’’) of the individuals in a d-dimen-
sional space with flavor-depending transport coefficients.

4. The states with at least one extinct species are absorbing.

In the language of chemistry, the MDP may be realized microscopi-
cally by an autocatalytic reaction scheme of the form XaY2Xa, XaQ0,
Xa+XbQkXa+lXb, where the last reaction subsumes the interactions of
individuals with colors a, b, and k, l may be the integers 0, 1. A description
in terms of particle densities typically arises from a coarse-graining proce-
dure where a large number of microscopic degrees of freedom are averaged
out. The influence of these is simply modelled by Gaussian noise-terms in
the Langevin equation which however have to respect the absorbing state
condition. The stochastic reaction-diffusion equations for the particle den-
sities in accordance with the four principles given above are of the form

“tna(x, t)=la N2na(x, t)+Ra(n(x, t)) na(x, t)+za(x, t) (1)

where the first term on the right hand side models the (diffusive) motion,
and the Ra are the overall reproduction rates of the particles with color a.
These deterministic terms are constructed proportional to na in order to
ensure the existence of an absorbing state for each species. Near the
absorbing transition the particle densities n are small quantities. Expanding
the rates Ra in powers of n results in

Ra(n)=−la 1ya+
1
2 C
b

gabnb+· · ·2 (2)

The Gaussian noises za(r, t) must also respect the absorbing state condi-
tion, whence

Oza(x, t) zb(xŒ, tŒ)P=2Dab(n(x, t)) d(x−xŒ) d(t−tŒ)+ · · ·

=laga da, bna(x, t) d(x−xŒ) d(t−tŒ)+ · · · (3)

Subleading terms in the expansions (2,3) as well as additional terms with
derivatives of the spatial d-function in the first line of Eq. (3) are not
displayed. It can be shown that they are irrelevant in the renormalization
group sense as long as the stability condition ;a, b lagabnanb \ 0 for all
na \ 0 is fulfilled. The breakdown of this condition signals the occurrence
of a discontinuous transition to compact growth and the appearance of
tricritical phenomena at the border between first and second order transi-
tions. Such a behavior is expected in microscopic models based on more
complicated particle reactions. (31) The ‘‘temperature’’ variables ya measure
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the difference of the rates of death and birth of individuals with color a.
Thus the temperatures may be positive or negative. We are interested in the
case where all ya % 0 (up to fluctuation corrections) which defines the mul-
ticritical region. Under these conditions all the species live on the border of
extinction.

Species with equal kinetic coefficients la and intraspecies coupling
constants ga, gaa belong to the same flavor class. Note that we do not
demand the equality of the temperatures ya. The equations of motion (2,3)
exhibit color-symmetry at the multicritical point with all ya=0, if all the
other parameters depend only on the flavors of the colors.

The next step is a mean field investigation of homogeneous steady
state solutions of the equations of motion. Neglecting all fluctuations in
Eq. (1) and using the expansion (2) up to first order in n, we find easily that
all Ma :=Ona(x, t)Psteady state=0 as long as all ya > 0, meaning the vacuum is
absorbing for each color. As soon as some of the temperatures become
negative, stationary solutions with Ma > 0 emerge, satisfying the corre-
sponding equations ;b gabMb=−2ya. Thus, in general a multitude of
hypersurfaces of first and second order transitions exist in the phase space
spanned by the relevant temperature variables {ya}, which separate the
phases where a specific color becomes extinct. Whenever (;b gabMb+2ya)
changes from a negative to a positive value, the order parameter Ma

undergoes a continuous or a discontinuous phase transition from an inac-
tive absorbing state with Ma=0 to an active state with Ma > 0. All hyper-
surfaces of phase transitions meet in the multicritical point where all tem-
peratures are zero. All homogeneous states are globally stable because the
evolution of the total particle density of homogeneous states in time is
given by d(;a Ma)/dt=−;a layaMa−

1
2 ;a, b lagabMaMb. Thus, all solu-

tions of the mean field equations of motion are bounded to a finite region
in the space of positive Ma as long as the stability condition mentioned in
the foregoing paragraph holds.

In the following we focus on the effect of fluctuations on the scaling
behavior of correlation and response functions in the vicinity of the mul-
ticritical point where the strongly relevant parameters {ya} are small. In
order to apply field-theoretic methods and the renormalization group
equation in conjunction with an e-expansion about the upper critical
dimension, (32–36) it is convenient to use the path-integral representation of
the underlying stochastic processes n(x, t)={na(x, t)}. (36–39) With the
imaginary-valued response fields denoted by ñ(x, t)={ña(x, t)}, the
generating functional of the connected response and correlation functions,
the Green functions, takes the form

W[h, h̃]=ln F D[ñ, n] exp 1−J[ñ, n]+F ddx F dt(hn+h̃ñ)2 (4)
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The response fields ñ(x, t) correspond to the conjugated auxiliary variables
of the operator formulation of statistical dynamics by Kawasaki (40) and
Martin, Siggia, Rose. (41) The dynamic functional J[ñ, n] and the func-
tional measure D[ñ, n], which in symbolic notation is proportional to
<x, t (dñ(x, t) dn(x, t)), is understood to be defined using a prepoint (Ito)
discretization with respect to time. The prepoint discretization leads to the
causality rule h(t [ 0)=0 in response functions which forbids response
propagator loops in the diagrammatical perturbation expansion. (36, 39)

The Langevin equations (1)–(3) are recast as a dynamic functional

J=F dt ddx 1Ca
ña(“t−la N2+Ra(n)) na−C

ab

ña Dab(n) ñb2

=F dt ddx C
a

la ña 1l
−1
a “t+ya−N2+1

2 1Cb
gabnb−ga ña22 na (5)

In the second line we have neglected subleading terms. Correlation and
response functions can now be expressed as functional averages of mono-
mials of the na and ña with weight exp(−J). A glance at Eq. (4) shows that
the responses are defined with respect to additional local particle sources
h̃a(x, t) \ 0 in the Langevin equations (1). A rescaling of the fields naQ lana,
ñaQ l−1

a ña leaves the functional J forminvariant but transforms the coupl-
ing constants gabQ lbgab and gaQ l−1

a ga. Thus, invariant coupling constants
are given by fab=gabgb. A suitable rescaling is defined by the conditions
gaa=ga. We choose this normalization and denote the rescaled fields by
sa ’ na and s̃a ’ ña.

The scaling by a suitable mesoscopic length and time scale, m−1 and
(lm2)−1 (with la ’ l) respectively, leads to s̃a ’ sa ’ md/2, fab ’ m e where
e=4−d. Hence dc=4 is the upper critical dimension. Now it is easy to
show that all neglected possible subleading terms in the expansion of Ra(n)
and the noise correlation, as well as higher gradient terms in the Langevin
equation (1) and non-Gaussian and non-Markovian noise correlations,
have coupling constants with negative m-dimensions near the upper critical
dimension. Therefore, under the renormalization group flow, they are
renormalized to zero and we can safely neglect them because we are
interested in the leading universal critical behavior. These couplings can be
reintroduced if one is interested in corrections to scaling. In a renormalized
field theory context, (32, 33) the m-dimensions of the coupling constants are
equal to the so called naive or engineering dimensions. All coupling cons-
tants with positive naive dimensions (the relevant couplings with respect to
the Gaussian fixed point as the starting point of the perturbation expan-
sion) need a renormalization because the corresponding vertex functions
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develop primitive divergencies in perturbation theory. However, no further
primitive divergencies are generated in other vertex functions. Thus the
field theory based on the functional J (Eq. (5)) is renormalizable and the
calculated scaling properties are universal for the full class of MDP-
processes.

III. RENORMALIZATION AND ONE-LOOP CALCULATION

Now we are in a position to develop the perturbation theory in the
inactive phase with all the ya > 0. To begin with we separate the anhar-
monic ‘‘interaction’’ terms from the dynamic functional J, Eq. (5), and
retain only the harmonic ones:

J0=F dt ddx C
a

(s̃a(“t+la(ya−N2)) sa−h̃a s̃a−hasa) (6)

Here we have included the external sources h̃a and ha. The Gaussian path
integral > D[s̃, s] exp(−J0)=exp((h, Gh̃)) involves only non-negative fields
sa(x, t) \ 0 as long as h̃a(x, t) \ 0. This may be seen as follows. Integrat-
ing out the response fields s̃a leads to a product of d-functions d(“tsa+
la(ya−N2) sa−h̃a). The solutions of the corresponding differential equa-
tions subject to the initial conditions sa(x, t=−.)=0 are given by sa(x, t)=
> ddxŒ dtŒ Ga(x−xŒ, t−tŒ) h̃a(xŒ, tŒ) with positive kernels Ga(x, t)=h(t)
×(4plat)−d/2 exp(−laya−x2/(4lat)). They yield the propagators for the
Fourier transformed fields sa(q, t)=> ddx sa(x, t) exp(−iq ·x) etc., as

Osa(q, t) s̃b(qŒ, tŒ)P0=(2p)d d(q+qŒ) da, bGa(q, t−tŒ)

Ga(q, t)=h(t) exp(−la(ya+q2) t) (7)

where the Heaviside theta-function is defined with h(t=0)=0 following
from the Ito-discretization of the path-integral and ensuring causality.

Besides the propagators, the anharmonic coupling terms in J, Eq. (5),
define the elements of the graphical perturbation expansion. They are
depicted in Fig. 1 where an arrow marks a s̃-leg and we draw diagrams
with the arrows always directed to the left (ascending time ordering from
right to left).

Figure 1 shows that the color of a s̃-leg on the left side of a vertex is
not annihilated: at least one s-leg on the right side displays the same color.
Thus, going from left to right, i.e., backward in time, through a diagram,
colors have only sources and no sinks. This property is a consequence of
the existence of absorbing states in the model. The perturbation expansion
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Fig. 1. Elements of the graphical perturbation expansion.

of a translationally invariant field theory can be analyzed by the calcula-
tion of the vertex functions C{a}, {b}({q, w}) corresponding to the one-par-
ticle irreducible amputated diagrams. Here the sets {a} and {b} denote the
colors of the amputated outer s̃-legs and s-legs respectively. Going
backward in time we conclude from the conservation property of the s̃-
colors that the colors of the set {a} must appear as a subset of {b}. There-
fore the only nonzero two and three point vertex functions are Ca, a, Caa, a,
and Ca, ab. Moreover, another property follows directly from color conser-
vation: the vertex function C{a}, {b} does not depend on parameters l, y, and
g with colors other than the ones of the vertex functions itself. Thus, Ca, a,
Caa, a, and Ca, aa are only functions of the parameters la, ya, and gaa=ga and
are in particular independent of the interspecies couplings gab with a ] b.
Therefore these vertex functions are the same as the corresponding func-
tions of the well analyzed one-species Gribov process. To calculate them
one can set the interspecies couplings gab=0. In this case the model shows
time reflection invariance called rapidity reversal in Reggeon field theory
s̃a(t)Y−sa(−t) from which follows the equality Caa, a=−Ca, aa.

Fig. 2. Primitively divergent vertex functions.
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Now we are ready to consider the renormalization of the model. It is
known that the perturbation expansion of a field theory with a momentum
cutoff L develops divergencies if LQ.. (32, 33) If the model is renormalizable
one can absorb all these ‘‘primitive divergencies’’ order by order in a loop
expansion into a suitable reparametrization of the parameters. Absorbing
the primitive divergencies regularizes the full model. The primitively
divergent vertex functions have nonnegative naive m-dimensions. Here, they
are Ca, a ’ m2 and Caa, a, Ca, ab ’ m e, logarithmic at the upper critical dimen-
sion, (Fig. 2).

Taking into account the general properties of the vertex functions
found in the foregoing paragraph, we see that the following renormaliza-
tion scheme renders the theory finite

saQ s̊a=`Z
(a)
s sa, s̃aQ s̊̃a=`Z

(a)
s s̃a, laQ l̊a=

Z (a)
l

Z (a)
s

la

yaQ ẙa=
Z (a)
y

Z (a)
l

ya, fabQ f̊ab=G−1
e m

e
Z (ab)

u

Z (b)
s Z

(a)
l Z

(b)
l

uab (8)

Here Ge=C(1+e/2)/(4p)d/2 is a convenient constant. Instead of a momen-
tum-cutoff regularization, we use dimensional regularization and minimal
renormalization in the following. From the discussion above we learn that
the renormalization factors Z (a)

i with i=(s, y, l) and Z (a)
u :=Z (aa)

u , which are
determined from Ca, a and Caa, a, are already known from the one-species
Gribov process and depend only on ua :=uaa. Thus Z

(a)
i =Zi(ua, e). The new

renormalization factors Z (ab)
u =Zint({u}, {l}, e) with a ] b stem from the

interspecies couplings. They depend only on the couplings ua, ub, uab, uba,
and the ratio la/lb.

We will now explicitly calculate the renormalizations to one-loop
order. The primitively divergent one-loop diagrams are shown in Fig. 3.

Fig. 3. Primitively divergent one-loop diagrams.
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Using dimensional regularization, we express the contribution of the
self-energy diagram, Fig. 3(a), as a function of external momentum and
frequency, q and w:

3(a)=−
(laga)2

2
F
p

1
iw+2laya+lap2+la(p+q)2

=
Ge
4e
y−e/2
a lag

2
a 1

4ya
2−e

+
iw
la
+
q2

2 2+· · · (9)

Here, we have retained only terms linear in w and q2. These are the terms
that display poles in e=4−d> 0.

To determine the primitive divergencies of the vertex functions we can
set external momenta and frequencies to zero and use equal temperatures
ya=y> 0 as infrared regularisators. The contributions of the three
diagrams Fig. 3(c,d,e) add to

3(c)+3(d)+3(e)=
lagab
2 1

lagab
2
lbgb F

p

1
2lb(la+lb)(y+p2)2

+
lbgba
2
laga F

p

1
2la(la+lb)(y+p2)2

+l2
agaaga F

p

1
(2la)2 (y+p2)22

=
Ge
4e
y−e/2la gab 1

la gabgb+lb gbaga
la+lb

+gaaga2 (10)

From the zero-loop contributions and the results of our short calculation,
Eqs. (9), (10), we obtain the (as yet unrenormalized) one-loop vertex func-
tions to the desired order in w and q2:

Caa=iw 11−
Ge
4e
gaagay

−e/2
a 2+laq

2

11−
Ge
8e
gaagay

−e/2
a 2

+laya 11−
Ge

2e(1−e/2)
gaagay

−e/2
a 2+· · · (11)

and

Ca, ab=la gab 11−
Ge
2e 1
lagabgb+lbgbaga

la+lb
+gaaga2 y

−e/2

2 (12)
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An explicit calculation of diagram (b) of Fig. 3 demonstrates that indeed
Caa, a=−Ca, aa if gaa=ga.

To absorb the e-poles in the renormalization Z-factors we note that
the vertex functions are renormalized by the scheme Eq. (8) as

Ca1 · · ·an Q C̊a1 · · · an=(Z (a1)
s · · ·Z (an)

s )−1/2 Ca1 · · · an (13)

Using again the renormalization scheme Eq. (8), we find the renormalized
vertex functions from Eqs. (11), (12) as

Caa=iw 1Z
(a)
s −

ua
4e
(m/ya) e/22+laq

2

1Z
(a)
l −

ua
8e
(m/ya) e/22

+laya 1Z
(a)
y −

ua
2e(1−e/2)

(m/ya) e/22+· · · (14)

and

Ca, abCb, bb=G−1
e m

el2
auab 1Z

(ab)
u −

1
2e 1
la uab+lb uba
la+lb

+ua+2ub2 (m/y)
e/2

2 (15)

Therefore the vertex functions become finite by choosing

Z (a)
s =1+

ua
4e
, Z (a)

l =1+
ua
8e
, Z (a)

y =1+
ua
2e

Z (ab)
u =1+

1
2e 1
la uab+lb uba
la+lb

+ua+2ub2 (16)

up to higher orders in the coupling constants u. As anticipated, for a=b we
have found the well known renormalization factors of the Reggeon field
theory.

IV. RENORMALIZATION GROUP ANALYSIS AND ASYMPTOTIC

SCALING

Next we will explore the scaling properties of multicolored directed
percolation. Scaling properties describe how physical quantities will trans-
form under a change of length scales. At the end of Chapter II we have
introduced the arbitrary mesoscopic length scale m. The freedom in the
choice of m, keeping the unrenormalized bare parameters {ẙa, l̊a, g̊a, g̊ab},
and—in cutoff regularization—the momentum cutoff L fixed, can be used
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to derive in a routine fashion the renormalization group (RG) equation for
the connected correlation and response functions, the Green functions

G{N, Ñ}({x, t})=7Da 1
D
Na

i=1
s(x (a)

i , t
(a)
i ) D

Na+Ña

j=Na+1
s̃(x (a)

j , t
(a)
j )28

conn

(17)

We denote m-derivatives at fixed bare parameters by “m |0. From m “m |0 G̊{N, Ñ}

=0 and the renormalization scheme Eq. (8), which leads to G̊{N, Ñ}=
<a (Z

(a)
s )

(Na+Ña)/2 G{N, Ñ}, we then find the RG equations

5Dm+C
a

Na+Ña
2

c (a)
s 6 G

{N, Ñ}=0 (18)

with the renormalization group differential operator

Dm=m“m+C
a

(za la“la+oaya“ya+ba“ua)+C
a ] b

bab“uab (19)

Here we have introduced the Gell–Mann–Low functions

za=m “m |0 ln la=c
(a)
s −c

(a)
l

oa=m “m |0 ln ya=c
(a)
l −c

(a)
y

bab=m “m |0 uab =(−e+c (b)
s +c

(a)
l +c

(b)
l −c

(ab)
u ) uab (20)

with ba=baa, and the Wilson functions

c (r)
i =m “m |0 ln Z

(r)
i , i=s, l, y, u, r=a, ab (21)

The RG equations (18) can be solved in terms of a single flow parameter l
using characteristics. Following this method, flowing parameters are
defined by the characteristic equations

l
d
dl
ūab(l)=bab(ū(l)), ūab(1)=uab

l
d
dl
l̄a(l)=za(ū(l)) l̄a(l)=z(ūa(l)) l̄a(l), l̄a(1)=la

l
d
dl
ȳa(l)=oa(ū(l)) ȳa(l)=o(ūa(l)) ȳa(l), ȳa(1)=ya

(22)
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and the RG equations (18) of the Green functions become

5l
d
dl
+C

a

Na+Ña
2

c(ūa(l))6 G
{N, Ñ}({x, t}, {ȳ(l)}, {ū(l)}, {l̄(l)}, lm)=0

(23)

Here, the functions c=c (a)
s , z=za, and o=oa are independent of the color a

and the interspecies couplings. The flow equations (22) describe how the
parameters transform if we change the momentum scale m according to
mQ m̄(l)=lm. Being interested in the infrared (IR) behavior of the theory,
we must study the limit lQ0. In general we expect that in this IR limit the
coupling constants ūab(l) flow to a stable fixed point uab, g according to the
first set of Eq. (22). In particular, the intraspecies couplings ūaa=ūa then
flow to a color independent fixed point ūa(0)=ug because ba(ū)=b(ūa), and
this Gell-Mann–Low function b is equal to the corresponding function
known from the one-species Gribov process. Thus, the fixed point value ug
is independent of any coupling to other species.

The solutions of the second and third set of the flow equations (23) are
readily found in terms of the functions ūa(l). In the IR limit l° 1 they
have the scaling form

l̄a(l)=lz−2(1+O(l)) A (a)
l la, ȳa(l)=l2−1/n(1+O(l)) A (a)

y ya (24)

where the A (a)
i are nonuniversal flavor dependent amplitude factors. The

scaling exponents

z=2+z(ug), n=
1

2−o(ug)
(25)

are already known from directed percolation. The ratios of the kinetic
coefficients for different flavors l̄a(l)/l̄b(l) are nonuniversal even in the IR
limit.

From Eq. (23) we find the solution in the IR limit as

G{N, Ñ}({x, t}, {y}, {u}, {l}, m)=l (N+Ñ) g/2(1+O(l))D
a

(A (a)
s )

(Na+Ña)/2

×G{N, Ñ}({x, t}, {l2−1/nAyy}, {ug}, {lz−2All}, lm) (26)

with N=;a Na, Ñ=;a Ña, and the anomalous field scaling exponent

g=c(ug) (27)
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of DP. Henceforth we omit the amplitude factors A (a)
i . In order to obtain

the scaling behavior of the Green functions we supplement the renor-
malization group result with a dimensional analysis. Dimensional analysis
in space and time gives

G{N, Ñ}({x, t}, {y}, {u}, {l}, m)

=m (N+Ñ) d/2G{N, Ñ}({mx, lm2t}, {y/m2}, {u}, {c}, 1) (28)

where ca=la/l. By combining Eqs. (26) and (28) we now get the asympto-
tic scaling form of the Green functions

G{N, Ñ}({x, t}, {y})=l (N+Ñ)(d+g)/2G{N, Ñ}({lx, lzt}, {y/l1/n}) (29)

An important consequence of the last equation is that all scaling properties
of the DP processes remain unaffected by the introduction of different
colors. Moreover, all intraspecies Green functions are completely indepen-
dent of the coupling between the species. These are consequences from the
absorbing state conditions for each species.

However, the interspecies coupling constants uab with a ] b determine
the properties of the interspecies scaling functions. Therefore we will now
consider the consequences of the flow equations for these parameters. For
this purpose we need the Gell-Mann–Low functions bab explicitly. From
the last of Eq. (20) we know that each of these functions begins with the
zero-loop term −euab and that the higher order terms are determined by
the Wilson functions. These functions, the logarithmic derivatives of the Z-
factors, are given by c=m “m |0 ln Z=;ab bab“uab ln Z. In minimal renor-
malization the Z-factors have a pure Laurent expansion with respect to
e : Z=1+Y (1)/e+Y (2)/e2+· · · . Thus recursively in the loop expansion the
Wilson functions also have a pure Laurent expansion and, because they are
finite for eQ0, this expansion reduces to the constant term, i.e., all e-poles
have to cancel in the logarithmic derivation. Hence, we obtain the Wilson
functions simply from the formula c=−;ab uab“uabY

(1). Now it is easy to
get these functions from the one loop results of the Z-factors Eq. (16). We
find to this order

c (a)
s =−

ua
4
, c (a)

l =−
ua
8
, c (a)

y =−
ua
2

c (ab)
u =−

1
2 1
lauab+lbuba
la+lb

+ua+2ub2 (30)
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from which one finds the Gell-Mann–Low functions Eq. (20) as

bab=1−e+
3ua
8
+
5ub
8
+
lauab+lbuba
2(la+lb) 2

uab (31)

The Gell-Mann–Low functions of the intraspecies couplings, the
‘‘diagonal’’ b-functions, follow as ba=(−e+3ua/2) ua giving the stable
fixed point values uag=ug=2e/3. With the help of Eqs. (20), (25), (27), this
stable fixed point leads to the well known one loop order DP exponents
z=2−e/12, n=1/2+e/16, and g=−e/6. Using the fixed point values uag
to obtain the Gell-Mann–Low functions of the interspecies couplings of a
pair of colors a ] b, we get

bab=1−
e

3
+
lauab+lbuba
2(la+lb) 2

uab (32)

In addition to the unstable decoupled fixed point values uabg=ubag=0, the
equations bab=bba=0 are solved by a line of fixed points

2la
la+lb

uabg+
2lb
la+lb

ubag=
4e
3

(33)

This equation is the key result of this Section. Clearly, however, the one-
loop calculation cannot give us any information whether the degeneracy of
all the points on this line is fundamental to our model or is remedied by
higher loop corrections. Thus, we must proceed to two-loop order, as done
in the following chapter. We note, however, that there are two special
points of unidirectional coupling on the fixed line:

uabg=0, ubag=
2(la+lb)
3lb

e and

ubag=0, uabg=
2(la+lb)
3la

e (34)

In the next chapter we will show that for colors with the same flavor,
meaning la=lb, these two points are indeed the only stable points on the
line. Because uabg=0 or ubag=0 are fixed point values at any loop order, we
conjecture that unidirectionality is generic for the asymptotic behavior of
coupled DP processes, irrespective of whether colors belong to different
flavors or not.
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V. TWO-LOOP RESULTS AND CROSSOVER TO

UNIDIRECTIONALITY

From the analysis in the foregoing chapters we know that the interac-
tion of two species does not depend on the existence of other ones. Thus,
we consider in this chapter a coupled model of two species of colors a=1
and 2 with the same flavor, i.e., equal kinetic coefficients la=l and intra-
species couplings ga=g. In contrast, the temperatures ya may be different.
Thus, the (unrenormalized) dynamic functional is now given by

J=F dt ddx l 1s̃1 1l
−1
“t+y1−N2+

g
2
(s1−s̃1)2 s1

+s̃2 1l
−1
“t+y2−N2+

g
2
(s2−s̃2)2 s2+

1
2
(s̃1g12+s̃2g21) s1s22 (35)

Note that in the case g12=0, the dynamics of species 1 completely
decouples from species 2 and vice versa. It follows that Ca, ab=0, if gab=0
and a ] b.

The detailed calculation of the two-loop contributions is presented in
Appendices A to C. Adding Eq. (B6) to the zero- and one-loop parts of the
selfenergy Eq. (11), we get after renormalization, using Eq. (13) and the
scheme Eq. (8),

Caa=lya 1Zy−
(m2/ya) e/2 u
2e(1−e/2) 11+u 1

2
e
−
3
1622+Cy

(m2/ya) e u2

e2 2

+lq2

1Zl−
(m2/ya) e/2 u

8e 11+u 1
13
8e
−

3
1622+Cq2

(m2/ya) e u2

e2 2

+iw 1Zs−
(m2/ya) e/2 u

4e 11+u 1
7
4e
−

3
1622+Cw

(m2/ya) e u2

e2 2
+O(e0u2) (36)

where the constants Ci are given in Eq. (B7), and u=ua. Note that in com-
parison with Eq. (14) now the one-loop terms acquire renormalizations to
O(u) in order to be consistent in O(u2) of the perturbation expansion.
These renormalized one-loop terms are needed to compensate non primi-
tive singular terms proportional to ln(m2/y) emerging now in the e-
expansion of Caa. Of course only primitive UV-divergencies, which means
here y-independent ones, have to be regularized by renormalization to
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make the theory finite. Eliminating the e-poles from Eq. (36) by the
Z-factors, we find

Zs=1+
u
4e
+
u2

32e 1
7
e
−3+

9
2
ln

4
32+O(u3)

Zl=1+
u
8e
+

u2

128e 1
13
e
−
31
4
+
35
2
ln
4
32+O(u3)

Zy=1+
u
2e
+
u2

2e 1
1
e
−
5
162+O(u3) (37)

In the same way as for the selfenergy we proceed with the other vertex
functions. Renormalizing Eq. (12) and adding the two-loop contribution
Eq. (C13) we get

Ca, ab=G−1/2
e m e/2luabu−1/2

1Z
(ab)
u Z−1/2

u +
(m2/ya) e/2

2e 111+
2u
e
−
3u
16
+
uab+uba
4e 2 u

+11+
3u
2e
−
3u
16
+
uab+uba
2e 2

uab+uba
2 2

+
(m2/ya) e

16e 11
8
e
+12 u

2+1
4
e
+
1
22 uuba+1

2
e
+12 uabuba

+1
4
e
+
3
2
−3 ln

4
3 2 uuab+1

1
e
+
3
2
ln
4
32 (u

2
ab+u2

ba)22+O(e0u2) (38)

where Zu=Z (aa)
u . Here the e-expansion also shows that the non primitive

divergencies ’ ln(m2/y) cancel. Eventually we find

Z (ab)
u =1+

1
4e

(6u+uab+uba)

+
1
16e 11

36
e
−
19
2 2 u

2+1
8
e
−
5
4 2 uuba+1

2
e
−12 uabuba

+1
8
e
−
9
4
+3 ln

4
3 2 uuab+1

1
e
−
3
2
ln
4
32 (u

2
ab+u2

ba)2+O(u3) (39)

and in particular

Zu=1+
2u
e
+1

1
e
−
1
42
7u2

2e
+O(u3) (40)
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We are now in the position to calculate the renormalization group
functions Eq. (20) from Eqs. (37), (39), and (40) with the help of Eq. (21).
They are given by

c=−
u
4
+1

2
3
−ln

4
32
9u2

32
+O(u3)

z=−
u
8
+1

17
2
−ln

4
32

u2

128
+O(u3)

o=
3u
8
−1

7
10
+ln

4
32
35u2

128
+O(u3)

(41)

and

bab=1−e+u+
1
4
(uab+uba)−

1
8
uabuba−

3
16
ln
4
3
(u2
ab+u2

ba)

−1
97
106

+ln
4
32
53u2

64
−1

3
4
−ln

4
32
3uuab
8

−
5
32
uuba+O(u3)2 uab

(42)

Setting b=baa=0, we find the nontrivial stable fixed point value

ug=11+1
169
288

+
53
144

ln
4
32 e2

2e
3
+O(e2) (43)

from which the scaling exponents Eqs. (25) and (27) of the Green functions
Eq. (29) follow to second order of the e-expansion as

g=−11+1
25
288

+
161
144

ln
4
32 e+O(e2)2

e

6

z=2−11+1
67
288

+
59
144

ln
4
32 e+O(e2)2

e

12

n=
1
2
+11+1

107
288

−
17
144

ln
4
32 e+O(e2)2

e

16

(44)

The first two expansions have been known for a long time from Reggeon
field theory (42, 43) where a different definition of the exponents is used. The
expansion of the exponent n was presented by the current author in ref. 1.
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The order parameter exponent b, which enters the scaling law for the mean
particle number in the active state OnP=M ’ |y|b, follows from Eq. (29) as

b=n
d+g
2
=1−11−1

11
288

−
53
144

ln
4
32 e+O(e2)2

e

6
(45)

We now turn to the interspecies coupling constants uab with a ] b. The
fixed point values as the solutions of the equation bab=0, where bab is the
Gell–Mann–Low function Eq. (42), are of three different types:

1. the decoupled fixed point u12g=u21g=0, totally unstable for u=ug;
2. the two unidirectional coupled fixed points u12g=0, u21g=2ug+O(e3)

and u21g=0, u12g=2ug+O(e3);
3. the symmetric fixed point u12g=u21g=ug+O(e3).

To discuss the stability and the crossover between the last two types
we try an Ansatz of the form uab=w+vEab with E12=−E21=1. We already
know from the one-loop result that uab is driven by the renormalization
flow to the fixed line w=ug with a crossover exponent fw=e/3+O(e2).
Setting therefore w=u in bab we get

bab(u, v)=b(u)+eabbv(u, v)

bv(u, v)=−(18−
3
8 ln

4
3)(u

2−v2) v=−0.017(u2−v2) v (46)

For u=ug this equation shows that the symmetric fixed point vg=0 is
unstable in contrast to the stable unidirectional coupled fixed points
vg=±ug. The solution of the flow equation ldv̄/dl=bv(ug, v̄) leads to the
crossover

v̄(l)2=
u2
g

1+(u2
g/v

2−1) lfv
(47)

with the very small crossover exponent

fv=(14−
3
4 ln

4
3) u

2
g=(19−

1
3 ln

4
3) e

2=0.0152e2 (48)

A qualitative picture of the flow of the interspecies couplings in the plane
u=ug under renormalization is shown in Fig. 4.

In addition to the four fixed points D (decoupled), S (symmetric), U
(unidirectional), the topology of the flow is determined by the symmetry
line u12=u21 which acts in the first quadrant as a separatrix between the
regions of attraction of the two unidirectional fixed points. There exists
another separatrix at the border of these regions, given to first order in e by
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Fig. 4. Flow of the interspecies couplings under renormalization.

u12+u21=0, where the flow is driven to the hatched line u12+u21=−2ug.
On the left of this line we have the region of instability I, in which the
condition ;a, b uabnanb \ 0 for all positive na is violated. Therefore we
conjecture that interspecies couplings with u12+u21 < 0 ultimately lead to
first order transitions. In Fig. 4 the line of fixed points of the one-loop cal-
culation is also shown. This line is the support of the slow crossover to the
unidirectional fixed points which therefore describe the ultimate critical
behavior of the MDP universality class.

We conjecture that in the case of colors with different flavors, la ] lb,
all properties are smooth functions of the nonuniversal ratio la/lb as long
as this ratio is sufficiently close to one. Thus, generalizing to different
flavors, the topology of the renormalization flow displayed in Fig. 4 should
only be smoothly deformed but not destroyed. In particular, the unidirec-
tional coupled fixed points U should be stable also for la ] lb.

VI. SYMMETRIES AND GENERAL FIXED POINT PROPERTIES

Having found the detailed fixed point structure of the model Eq. (35)
of two colors with the same flavor in the two-loop approximation, we will
now investigate which results are valid to all orders of perturbation theory.
According to the considerations of the third chapter, one demonstrates
easily that for a ] b the vertex function Ca, ab=0 if gab=0. Thus the lines of
unidirectionally coupled models in Fig. 4, namely u12=0 or u21=0, respec-
tively, are invariant under the renormalization flow. Trivially, the
decoupled fixed point D is the intersection point of these lines. For g12=g21
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the dynamic functional J Eq. (35) possesses the symmetry s1 Y s2, s̃1 Y s̃1,
and y1 Y y2 from which we find that C1, 12=C2, 21. Thus, these two vertex
functions need the same Z-factor: Z12=Z21. It follows that the symmetry
line in Fig. 4, u12=u21, is invariant under renormalization.

Is there a condition that determines the crossover line? The answer is
yes. We change to variables corresponding to the total and relative particle
numbers, respectively,

s=s1+s2, s̃=1
2 (s̃1+s̃2)

c=s1−s2, c̃=1
2 (s̃1−s̃2) (49)

Such linear transformations do not alter the measure of the functional
integrals, and the dynamic functional changes, in the special case y1=y2=y,
to

J=F dt ddx l 1s̃ 1l
−1
“t+(y−N2)+1

g
4
+
g12+g21

8 2 s−
g
2
s̃2 s

+c̃ 1l
−1
“t+(y−N2)+

g
2
s2 c−

g
2
c̃2s−gs̃c̃c

+1
g
4
−
g12+g21

8 2 s̃c
2+
g12−g21

8
c̃(s2−c2)2 (50)

We see that in the case g12+g21=2g the dynamics of the total particle
number decouples from the dynamics of the relative one in the sense that
all vertex functions containing s̃-, but no c̃-legs are zero if c-legs are
attached. In particular Cs̃, cc=0 and Cs̃, ss=−Cs̃s̃, s, which leads to the
renormalized interspecies couplings with u12+u21=2u and determines the
crossover line to all loop-orders. Note that on the symmetry line g12=g21

holds, and the functional J is then invariant against cY−c, c̃Y−c̃.
The different fixed point values of the interspecies couplings are now

fully determined as the intersection points of the several invariant lines (see
Fig. 4): the unidirectional lines u12=0, u21=0, the symmetry line u12=u21,
and the crossover line u12+u21=2u. Thus, we find to all orders for the
symmetric fixed point S: u12g=u21g=ug and for the stable unidirectional
fixed points U: u12g=0, u21g=2ug and u21g=0, u12g=2ug, respectively.
These are of course the results that we have found explicitly in the two-
loop approximation.

The unidirectionally coupled model, which describes the generic
scaling properties of the MDP processes, exhibits another symmetry. Using
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g12=0 and g21=2gŒ, we write the dynamic functional of this model in the
form

Ju=F dt ddx l 1s̃1 1l
−1
“t+(y1−N2)+

g
2
(s1−s̃1)2 s1

+s̃2 1l
−1
“t+(y2−N2)+

g
2
(s2−s̃2)2 s2+s̃2(−s+gŒs2) s12 (51)

Here we have introduced a further harmonic unidirectional coupling ’ s,
which corresponds to an additional linear term: “n2/“t= · · ·+lsn1 in the
Langevin equation for species 2. This term was first considered by Täuber
et al. (30) in their study of the nonequilibrium critical behavior in unidirec-
tionally coupled DP processes. Of course, s is a relevant parameter like the
temperatures ya and needs its own multiplicative renormalization with a
factor Zs determined by

sQ s̊=ZsZ
−1
l s (52)

in such a way that the renormalized vertex function with an insertion
C2, 1; (s̃2s1) is finite. The settings s=y1=y2=0 define the multicritical point.

We generalize time reflection (rapidity reversal) s(t)Y−s̃(−t), which
is broken by the DP transition to an active state, to read

s1(t)Q−s̃2(−t), s̃1(t)Q−s2(−t)−s1(−t)

s̃2(t)Q−s1(−t), s2(t)Q−s̃1(−t)+s̃2(−t) (53)

Under this transformation the functional Ju changes to

Ju Q F dt ddx l 1s̃1 1l
−1
“t+(y2−N2)+

g
2
(s1−s̃1)2 s1

+s̃2 1l
−1
“t+(y1−N2)+

g
2
(s2−s̃2)2 s2

+s̃2(−s+y1−y2+gŒs2) s1+(g−gŒ)(s̃1 s̃2s1−s̃2
2s1+s̃2s1s2)2 (54)

We learn from this relation that in the case g=gŒ, Ju gains a higher sym-
metry at the multicritical point, which is not destroyed by renormalization.
It follows in this case that s renormalizes in the same way as the ya, which
implies Zs=Zy, and that the renormalized couplings are related by
u −g=u21g=ug at the fixed point, as we already know from above. From
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these considerations follows that the crossover exponent, which is defined
by the scaling invariants s/yFa , is given by F=1.

VII. THE THHG MODEL

Recently Täuber et al. (30) (in the following abbreviated by THHG)
introduced a general unidirectionally coupled DP process with species-
independent diffusion coefficients. This model was motivated by a study of
Alon et al. (28) on a nonequilibrium growth model for adsorption and
desorption of particles which displays a roughening transition. At first we
will complete the THHG model by a cross diffusion term that is generated
by coarse graining and is indispensable for a full renormalization. Intro-
ducing a forminvariance transformation we derive the one-loop renor-
malization group functions for the invariant combination of the parame-
ters. Then we show that the fixed point of the THHG model coincides with
the unidirectional model of the last section. The line of fixed points found
by THHG arises from the application of the forminvariance transforma-
tion. Lastly we demonstrate that the linear coupling between the two
species renormalizes in the same way as the temperature variables. Thus the
crossover exponent of this linear interspecies coupling is simply given by
F=1.

The THHG-model takes in our dynamic functional language the form

JTHHG=F dt ddx l 1s̃1 1l
−1
“t+y1−N2+

g
2
(s1−s̃1)2 s1

+s̃2 1l
−1
“t+y2−N2+

g
2
(s2−s̃2)2 s2

−s̃2 1s+b N2−
f1

2
s1−f2s2+f −2s̃1+

f −1
2
s̃22 s12 (55)

In contrast to THHG, we have introduced an additional cross diffusion
term ’ s̃2 N2s1 that is indispensable for a complete renormalization of the
general model. In physical terms, coarse graining will always produce cross
diffusion in this coupled model. Strictly, however, coarse graining does
even more: it also produces a term proportional to the time derivative of
the density of the first species in the Langevin equation of the second
one—besides further irrelevant couplings. Accordingly, in the functional
JTHHG a term proportional to s̃2 “ts1 arises. However, such a term can be
eliminated by a suitable redefinition of the fields

s̃1 Q s̃1−bs̃2, s1 Q s1, s̃2 Q s̃2, s2 Q s2−bs1 (56)
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so that the harmonic parts with the time derivatives in the dynamic func-
tional remain diagonal. Note that in the special case b=f1=f −1=f −2=0,
f2=gŒ the functional JTHHG Eq. (55) is identical to Ju, Eq. (51), from
which we know that it is fully renormalizable, in particular, in the case
gŒ=g, by the Z-factors Eqs. (37) and (40). In the following we will demon-
strate that the asymptotic properties of the THHG-model indeed belong to
the universality class described by Ju.

It is well known (44) that the infinitesimal generators of a continuous
transformation of the fundamental fields, which leads to a forminvariance
of the describing statistical functional, define redundant operators. These
redundant operators unnecessarily contaminate the renormalization group.
Therefore they should be avoided from the outset. Here we introduce a
linear, homogeneous transformation between the fields, which does not
change the form of the functional JTHHG Eq. (55). Let us call it the
a-transformation:

s̃1 Q s̃1−as̃2, s1 Q s1, s̃2 Q s̃2, s2 Q s2+as1 (57)

Note the difference to the b-transformation Eq. (56), which is exploited to
eliminate a s̃2 “ts1-term from JTHHG. This a-transformation leads to new
coupling constants that we denote with a bar:

s̄=s+a(y1−y2)

f̄1=f1+2af2+a(a−1) g, f̄2=f2+ag

f̄ −1=f −1−2af −2+a(a+1) g, f̄ −2=fŒ2−ag

(58)

Now we renormalize the THHG-model by the scheme

s̃1 Q s̊̃1=Z1/2
s (s̃1+As̃2), s1 Q s̊1=Z1/2

s s1

s2 Q s̊2=Z1/2
s (s2+As1), s̃2 Q s̊̃2=Z1/2

s s̃2

yaQ ẙa=Z−1
l Zyya, gQ g̊=Z−1/2

s Z−1
l Zgg

sQ s̊=Z−1
l (Zss+(Y1+AZy) y1+(Y2+AZy) y2)

bQ b̊=Z−1
l Zbb−2A

f1 Q f̊1=Z−1/2
s Z−1

l (Z1f1−A(1−A) Zgg−2AZ2f2)

f −1Q f̊ −1=Z−1/2
s Z−1

l (Z
−

1f
−

1−A(1−A) Zgg−2AZ −2f
−

2)

f2 Q f̊2=Z−1/2
s Z−1

l (Z2f2−AZgg)

f −2Q f̊ −2=Z−1/2
s Z−1

l (Z
−

2f
−

2−AZgg)

(59)
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where g=(um e/Ge)1/2, Zg=Z1/2
u , and the Zi with i=s, l, y, u are given by

Eqs. (37) and (40). Besides u, dimensionless coupling constants are defined
as v (−)

a =(Ge/m e)1/2 f (−)
a . The scheme Eq. (59) is chosen in such a way that the

renormalized dynamic functional reads

JTHHG=F dt ddx l 1s̃1 1Zsl
−1
“t+Zyy1−Zl N2+

Zgg
2
(s1−s̃1)2 s1

+s̃2 1Zsl
−1
“t+Zyy2−Zl N2+

Zgg
2
(s2−s̃2)2 s2

+s̃2 12AZsl
−1
“t−Zss−Y1y1−Y2y2−Zbb N2

+
Z1f1

2
s1+Z2f2s2−Z −2f

−

2s̃1−
Z −1f

−

1

2
s̃22 s12 (60)

Note that the counter term 2AZs serves to cancel primitive divergencies
arising in the vertex function “wCs̃2s1. In dimensional regularization and
minimal renormalization the counterterms A and Ya are given by series in
e−1 beginning with simple poles ’ A (1)/e and ’ Y (1)

a /e, respectively. We
have formerly shown that only the residua of these poles determine the
renormalization group functions.

It is now appropriate to define a-transformation invariant dimen-
sionless coupling constants as

w1=`u (v1+v2)−v2
2, w −1=`u (v

−

1+v −2)−vŒ22, w2=`u (v2+v −2)
(61)

The somewhat lengthy but simple calculation of all the one-loop
renormalizations leads to the Gell–Mann–Low functions of the renor-
malization group equation. In part, in the case b=0, they can be derived
from the results of THHG. (30) If we set u to its fixed point value ug and
define as usual bp=“p/“ lnm|0, where p is any of the coupling constants, we
obtain for the b-functions of the invariant couplings

8bw1
=4(2w1+w2−ug) w2+4ugw

−

1+16uga−ugb(8w1+10w2)+9(ugb)2

8bwŒ1=4(2w −1+w2−ug) w2+4ugw1+16uga−ugb(8w
−

1+10w2)+9(ugb)2

4bw2
=8(w2−ug) w2+4ug(w1+w −1)+8uga−6ugbw2+3(ugb)2

8ugbb=ug(w1+w −1)+(w2−ug) w2+16uga−ugb(w2+ug)+(ugb)2 (62)
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The function a results from the additive renormalization A and mixes the
renormalized fields in a correlation or response function under application
of the renormalization group as

5Dm+
c

2 6 {s̃1, s1, s̃2, s2}={−as̃2, 0, 0, −as1} (63)

Here Dm is the renormalization group differential operator now given by

Dm=m“m+zl“l+oy(y1“y1+y2“y2)+(oss+o1y1+o2y2) “s+C
p
bp“p (64)

with os=cl−cs, oa=−ya−a, and Eq. (63) acts on Green functions. The
ya=−;p “pY

(1)
a result from the additive renormalizations Ya. The function

a=−;p “pA (1) is found to be

a=−
1
16 12w1+w −1+2 1

w2

u
−12 w2−4bw2+3ub2

2 (65)

The new renormalizations yield

cs=
1
2
(bu−w2)

y1=
1
2 1`u v1+v2v

−

2−
3b
2
`u v2−

b
2
`u v −2+

3b2

4
u2

y2=
1
2 1`u v

−

1+v2v
−

2−
3b
2
`u v −2−

b
2
`u v2+

3b2

4
u2

(66)

In order to determine the fixed-point solutions of Eq. (62), bpg=0, we
impose the condition ag=bg=0. This yields w1g=w −1g=0, with w2g=0
(unstable) or w2g=ug (stable). It can easily be checked that these solutions
are consistent with the full set of Eqs. (62) and (65). These are the solutions
found by THHG. (30) Note that on the line of fixed points generated from
the stable fixed point by the a-transformation a minimally coupled fixed
point with v1g=v −1g=v −2g=0, v2g=`ug is found.

Now one has to prove stability of the fixed points of the full equations
(62) without using the constraints ag=bg=0. A linearization about
w1=w −1=b=0 and either w2=0 or w2=ug shows that the flow of b is un-
stable for w2=0, whereas it shows full stability of the fixed point for w2=u.
This vindicates the neglect of a, b and the corresponding counterterms A
and Zbb in ref. 30 but only at the stable line of fixed points, which is
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generated from the fixed point by the a-transformation. However, without
further knowledge this statement is only correct in the one-loop calculation
and could be violated in higher loop orders. We will show that the stable
fixed point is given by w1g=w −1g=0, w2g=ug to all orders of the loop
expansion. As a consequence, the fixed point values ag, bg, y1g, y2g are
zero, and csg=cyg. This leads to a crossover exponent F=1 where F
determines the scaling of s/|yi |F.

Indeed, we see from Eq. (61) that the stable one-loop order fixed point
belongs, up to an a-transformation, to the dynamic functional JTHHG,
Eq. (60), with coupling constants f1=f −1=f −2=0 and f2=g, i.e., model Ju,
Eq. (55), with the additional constraint gŒ=g. Above it was shown that this
equality leads to the time reflexion Eq. (53) as a higher symmetry. This
higher symmetry is preserved under renormalization and, because Ju is
fully renormalizable, we have the result w1g=wŒ1g=0, w2g=ug and F=1 to
all loop orders.

Computations based on the dynamic functional Ju, Eq. (55), are much
easier to perform than calculations using the complete model JTHHG,
Eq. (60). Thus it may be possible to find the equation of state for
M2=gOs2P to second order and check the assumptions made in ref. 30 on
the reexponentiation of logarithms to yield the new order parameter expo-
nent b2 of that paper (for a calculation of the equation of state for
M1=gOs1P to two-loop order see ref. 18).

The model Ju describes the coupled DP processes near the multicriti-
cal point y1=y2=s=0. What is needed for a thorough calculation of b2 is
a theory that comprises the limit sQ.. Therefore our considerations here
do not solve the problem addressed in ref. 30, namely the determination of
the scaling exponent b2 that controls the scaling M2 3 s

b1−b2(y1c−y1)b2
where species 1 is in its active phase. THHG calculate b2 by reexponentia-
tion of logarithms. (We have done a recalculation and find a slightly dif-
ferent value b2=1/2−13e/96+O(e2). The difference arises from a sublead-
ing term resulting from the ominous peculiar diagram Fig. 9(c) in ref. 30.)
However, the approach of THHG relies on the assumption that simple
reexponentiation is possible. To derive such scaling properties faithfully,
one indeed has to solve the crossover problem sQ..

VIII. TOURNAMENTS

As we have shown in the previous chapters, the scaling behavior of
MDP near the absorbing state transition coincides with that of ordinary
one-species DP. In particular, the critical exponents are the same. An
important consequence is, that the critical behavior is independent of the
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Fig. 5. Cyclic and hierarchic tournament of three species.

number of colors. The characteristic asymptotic feature of MDP manifests
itself in the asymptotic unidirectional coupling of each pair of colors. This
unidirectional behavior of the couplings of an interacting population is
summarized in the following graphical picture. Consider a graph where
each node represents one color. The stable fixed points are then represented
by the so-called tournaments, that are the complete graphs with directed
edges. (46) The directed edge from color a to color b stands for the influence
of a on b in the respective equations of motion. In particular, for a
population of three species there exist two different tournaments (up to
permutation of the colors) which we call ‘‘cyclic’’ and ‘‘hierarchic,’’ Fig. 5.

One gets a graphical picture for the not fully stable fixed points either
by deleting the directionality of the edges between the nodes for symmetric
couplings of the corresponding colors, or by completely deleting the edges
for the uncoupled pairs (uncomplete tournaments).

To get a simple qualitative impression of the behavior of the dynamic
system of a population corresponding to a tournament of colors with the
same flavor, we consider, in the active region with all ra :=−ya/2g \ 0, a
renormalized mean-field theory of the equations (1), (2) for spatially
homogeneous densities n̄a and set gab=g(1+eab) with eaa=0. We redefine
the time scale tQ2t/lg and get

“t n̄a=1ra−C
b

(1+eab) n̄b2 n̄a (67)

Then the decision, which of all the eab=−eba is equal ±1, defines the
tournament. The edge between a pair of species is directed from b to a if
eab=−eba=+1 and vice versa. The directions of the edges therefore repre-
sent the unidirectional ‘‘pressure’’ on the reproduction rate resulting from
one color to another. Despite the simplicity of the Eq. (67) they can
generate a complex dynamic behavior (see e.g., refs. 26 and 27). First, let us
consider the stationary states of Eq. (67) for a population consisting of
three species. In the ternary phase diagram spanned by the positive rates
r1, r2, r3 in the subspace ;a ra=r=const., one finds different regions with
one, two ore all three species alive, Fig. 6. These regions are bounded by
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Fig. 6. Phase diagrams of the cyclic and hierarchic tournament.

critical lines with absorbing state transitions where some colors become
extinct. The dynamic behavior of the hierarchic tournament Fig. 5(b) is
relatively simple: from each nonequilibrium initial state {n̄ (0)

a }, the system
relaxes to the stationary state which is a stable node. In the case of the
cyclic tournament Fig. 5(a), for rates {ra} such that we have a three species
stationary state, one also finds regions for which the ultimate relaxation
behavior is characterized by attracting nodes. However, for rates which
lead to stationary states belonging to the crosshatched area in the ternary
diagram spanned by the {n̄a}, Fig. 7, we find stable spirals (damped cyclic
relaxation) as the ultimate relaxation behavior (qualitatively pictured by
the trajectory in Fig. 7).

For stationary points near the middle of Fig. 7 the damping is very
small and cyclic behavior dominates the dynamics. Especially in the middle
of the diagram, i.e., for equal rates r1=r2=r3=r/3, the motion is not
damped anymore. In this case, the dynamic system Eq. (67) is known as a
special form of the May–Leonard model (47) that has been extensively
studied in mathematical biology. (26, 48–50) Finally, after a relaxation in the
plane n̄=;a n̄a=r, there exists another constant of motion m=<a n̄a and
the dynamic behavior is characterized by limit cycles around the neutral
stationary point {n̄ (0)

a =r/3}.

Fig. 7. Dynamic behavior of the cyclic tournament.
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IX. EPILOGUE

In this paper, we have studied stochastic multispecies models of
populations that evolve near the extinction threshold of all the species and
therefore have many absorbing states. The critical properties of these mul-
ticolored directed percolation processes (MDP) at their multicritical points
and at all appending lines of continuous transitions with extinction of some
species are governed by the well known DP exponents. This findings seem
to agree with simulational results on a two species system. (51) In other
regions of the phase diagram of course more complicated critical behavior
may arise such as multicritical points with different scaling exponents. (52)

The models considered here have many absorbing states (each combination
of colors may go extinct irrespective of the other ones). Therefore they are
different from the models considered by Grinstein et al. (14) These authors
showed that multispecies systems with one absorbing state belong to the
DP universality class.

As a key result we have shown that the characteristic asymptotic
feature of the interspecies correlations and the phase diagram of MDP
shows up in the asymptotic unidirectional coupling of each pair of species
which breaks color-symmetry. A special result of our analysis is the very
slow crossover to this asymptotic unidirectionality which may be seen in
computer simulations. This slow crossover eventually leads to a system
working cooperatively. It is interesting that the asymmetry between the
species well described by tournaments seems to be the condition for this
cooperation near extinction. The model considered in this paper is a simple
but universal model of a cooperative society. Therefore, it should have
many applications in diverse fields of natural and even social science.
Competition and extinction are of course subjects heavily studied in
theoretical biology. Compared to models as covered e.g., in the monograph
of Hofbauer and Sigmund, (26) our work features a more realistic local
description of the interactions between the species, their diffusional motion,
and it includes local fluctuations. The features are encoded in the form of
local stochastic partial differential equations. Accompanied by coarse
graining and renormalization, this gives an universal macroscopic picture
of cooperativity near the critical states of extinction.

APPENDIX A: TWO-LOOP INTEGRALS

In the calculation we encounter momentum integrals of the type

Ikl; m=G−2
e y

e F
q1, q2

1
(q2

1+y)
k (q2

2+y)
l (q2

1+q2
2+(q1+q2)2+3y)m (A1)
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where Ge=C(1+e/2)/(4p)d/2, e=4−d, and >q · · ·=(2p)−d > ddq.... They
can be derived from two ‘‘mother’’ integrals

M (1)(a, b; c)=G−2
e F

q1, q2

1
(q2

1+a)(q2
2+b)(q2

1+q2
2+(q1+q2)2+c)

M (2)(a; c)=G−2
e F

q1, q2

1
(q2

1+a)(q2
1+q2

2+(q1+q2)2+c)

(A2)

by taking derivatives with respect to the parameters a, b, c. Discarding
nonsingular terms, we find in dimensional regularization

M (1)(a, b; c)=−
1
e 1

a1−e+b1−e

e
+
3(a+b)

2 11−ln
4
32+c ln

4
32

M (2)(a; c)=
1
4e 1

2c−3a
e

a1−e+ac 11+ln
4
32−3a2

11+
1
2
ln
4
32+

c2

3 2
(A3)

These formulas yield the singular parts of the integrals (A1) as

I (SP)
11; 1=−

1
e2
(2+3e), I (SP)

11; 2=
1
e
ln
4
3

I (SP)
12; 1=

1
2e2 12+e−3e ln

4
32, I (SP)

10; 3=
1
12e

, I (SP)
20; 1=

3
2e

I (SP)
20; 2=

1
4e2 12−e+e ln

4
32, I (SP)

30; 1=−
3
8e2 12+e+e ln

4
32

(A4)

APPENDIX B: TWO-LOOP SELFENERGY DIAGRAMS

In Fig. 8 the two-loop selfenergy diagrams are drawn. Diagram
Fig. (8a) leads to

4(a)=
(lg)4

2
F
q1, q2

F D
3

i=1
dti e−iwt1G(q/2+q1, t1) G(q/2−q1, t1−t2)

×G(q/2−q1, t3) G(q/4+q2, t1−t3) G(q/4−q1−q2, t1−t3) (B1)

where G(q, t) is the propagator (Eq. (7)) and we always set ya=y> 0 as an
IR regulator.Noting that e−iwt1G(t1)=(e−iw(t1−t2)G(t1−t2))(e−iw(t2−t3)G(t2−t3))
×(e−iwt3G(t3)) factorizes in the integral, the time integrations over the
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intervals (t1−t2), (t2−t3), t3 are easily performed. An expansion in iw and
q2 to linear order eventually yields

4(a)=
lg4

8
G2
ey

−e

1yI20; 1−
iw
l
(I30; 1+I20; 2)

−
q2

2 1I30; 1+
3
4
I20; 2+

1
2d

(I20; 3−I10; 3)22 (B2)

where the Ikl; m denote the integrals defined in Eq. (A1). Extracting the sin-
gular parts using Eq. (A4), we obtain

4(a)=
lg4

32e
G2
ey

−e

16y+1
2
e
+5+ln

4
32

iw
2l
+1

3
e
+
55
12
+
3
2
ln
4
32
q2

4 2 (B3)

In the same way we calculate the second selfenergy diagram Fig. 8(b):

4(b)=(lg)4 F
q1, q2

F D
3

i=1
dti e−iwt1G(q/2+q1, t1−t2) G(q/2−q1, t1−t3)

×G(q1−q2, t2−t3) G(q/2+q2, t2) G(q/2−q2, t3)

=
lg4

4
G2
ey

−e

1yI11; 1−
iw
l
(I12; 1+I11; 2)

−
q2

2 1I12; 1+I11; 2+
2
d
(I11; 3+2I10; 3−I11; 2)22 (B4)

up to higher orders in iw and q2. Extracting again the singular parts, we
find

4(b)=−
lg4

2e
G2
ey

−e

11
1
e
+
3
22 y+1

2
e
+1−ln

4
32
iw
4l
+1

1
e
+
7
12
−ln

4
32
q2

4 2
(B5)

Fig. 8. Two-loop selfenergy diagrams.
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Fig. 9. Two-loop vertex diagrams; the numbers show the other time orderings.

Summing up, we finally get from 4(a) and (4b) the two-loop contribution
of the selfenergy as

C (2−loop)
aa =

lg4G2
e

e2
y−e

1Cyy+Cw
iw
l
+Cq2q2

2 (B6)

where

Cy=
1
2
+
9e
16
, Cw=

7
32 11+

3e
14
−
9e
14
ln
4
32,

Cq2=
13
128 11+

19e
52
−
35e
26
ln
4
32

(B7)

APPENDIX C: TWO-LOOP VERTEX DIAGRAMS

Figure 9 presents the eleven two-loop vertex diagrams. They can be
calculated by the same method as the selfenergy diagrams. Here the exter-
nal frequencies and momenta can be set to zero because the expansion in
these variables does not lead to primitive divergencies. As an example we
show the calculation of the diagram Fig. 9(i) explicitly.

Fig. 10. Two different time orderings of a vertex diagram.
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The two possible different time orderings of the vertices are shown in
Fig. 10.

The symmetry factor of the diagrams is one, but one also has to add
the two diagrams arising from the interchange of the color indices b and c.
After the factorization of the propagators, the integration over the time
intervals, indicated by the broken lines, is trivial and leads to the expression
(with the abbreviations oi=l(y+q2

i), q3=q1+q2)

5(i)=−
l5

8
C
m, n
(damgan+dacgam)(dmngmb+dmbgmn)(damgan+dacgam) gbgc

× F
q1, q2 1

1
(2o1)(o1+o2+o3)(2o1+2o2)(2o1)

+
1

(2o1)(o1+o2+o3)(2o1+2o2)(2o2)2
+(bY c)

=−
lg2

32
G2
ey

−e(dabgac+dacgab)(g(gbc+gcb)+gabgac+gbcgcb) I12, 1 (C1)

Thus we obtain the contribution of the diagram Fig. 9(i) to the vertex
function Ca, ab:

C5(i)
a, ab=

lg2

16
G2
ey

−egab(g(gba+gab)+gabg+gbagab) I12, 1 (C2)

In the same manner we calculate the other diagrams of Fig. 9 and find

C5(a)
a, ab=

lg2

32
G2
ey

−egabg(2g+gab+gba) I30, 1 (C3)

C5(b)
a, ab=

lg2

16
G2
ey

−egabg(2g+gab+gba)(I20, 2+I30, 1) (C4)

C5(c)
a, ab=

lg2

32
G2
ey

−egabg(2g+gab+gba) I30, 1 (C5)

C5(d)
a, ab=

lg2

16
G2
ey

−egabg(2g+gab+gba)(2I11, 2+I12, 1) (C6)

C5(e)
a, ab=

lg2

16
G2
ey

−egabg(2g+gab+gba) I12, 1 (C7)

C5(f)
a, ab=

lg2

32
G2
ey

−egab((g
2
ab+g2

ba)+2ggba+4g2)(2I11, 2+I12, 1) (C8)
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C5(g)
a, ab=

lg2

16
G2
ey

−egab(g(2g+gab)+gabgba) I12, 1 (C9)

C5(h)
a, ab=

lg2

16
G2
ey

−egab(g
2
ab+g2

ba+2ggba+4g2) I20, 2 (C10)

C5(j)
a, ab=

3lg2

16
G2
ey

−eg2
ab(g+gba) I11, 2 (C11)

C5(k)
a, ab=

lg2

16
G2
ey

−egab(g
2
ab+g2

ba+2ggba+4g2) I11, 2 (C12)

Adding up all the two-loop contributions C5(a)
a, ab, ..., C

5(k)
a, ab and extract-

ing the singular parts Eq. (A4), we finally get

C (2−loop)
a, ab =

lg2G2
e

16e
y−egab 11

8
e
+12 g

2+1
4
e
+
1
22 ggba+1

2
e
+12 gabgba

+1
4
e
+
3
2
−3 ln

4
3 2 ggab+1

1
e
+
3
2
ln
4
32 (g

2
ab+g2

ba)2+O(e0)

(C13)

APPENDIX D: EQUIVALENCE OF THE BOSONIC AND THE

LANGEVIN APPROACH

Here we shortly show that a so-called exact microscopic approach to a
field theory of DP based on a master equation for bosonic particles leads to
the same field theory as the mesoscopic Langevin formulation. For brief-
ness we restrict ourselves to the case of a single species. The generalization
to several species is then straightforward.

The microscopic approach is based on the introduction of a Fock
space spanned by bosonic multiparticle states |{n}P, where the numbers ni=
0, 1, ... describe the occupation of the lattice sites i by particles. (21) A prob-
ability distribution P({n}) translates into a state |PP=;{n} P({n}) |{n}P
and the expectation value of an observable A({n}) is given by

OAP=O · | A({a+a}) |PP (D1)

Here a+
i and ai are creation and annihilation operators of particles at the

site i, respectively, and O · |=O0| exp(;i ai) denotes the so-called projection
state. In the Fock space formulation the master equation for the temporal
evolution of the probability distribution P({n}, t) takes the form

“

“t
|P(t)P=−H |P(t)P (D2)
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where the Hamiltonian H describes the different diffusion and reaction
processes. In particular the local reactions XQ0, XQ2X, and 2XQX lead
to a reaction partHreact=;i [a(a

+
i −1) ai+b(1−a+

i ) a
+
i ai+c(a

+
i −1) a+

i a
2
i],

where a, b, and c are rates of death, birth and competition of the particles.
Following standard procedures (22) one writes the expectation value

OAP as a coherent-state path integral

OA(t)P=F D(k̂, k) A({k(t)}) exp(−S[k̂, k]) (D3)

where k+=1+k̂, and the Lagrangian of the action S=> dt ;i L(k̂(xi, t),
k(xi, t))+initialterms is given by

L=k̂ “tk+l Nk̂ Nk+Lreact (D4)

Lreact=ak̂k−bk̂(1+k̂) k+ck̂(1+k̂) k2

=(a−b) k̂k+k̂(ck−bk̂) k+c(k̂k)2 (D5)

Here N denotes a lattice gradient. For DP a, b, and c are all finite positive
parameters with a % b at criticality. Thus, the quartic term c(k̂k)2 is irrele-
vant in the continuum limit, and the action takes on the same structure as
the dynamic functional Eq. (5). Note the different sign of the ‘‘noise’’ terms
−bk̂2k and+ck̂2k2. In case of vanishing death rate a the birth rate b itself
goes to zero at criticality and one has to retain the quartic noise term. Its
positive sign corresponds to an ‘‘imaginary’’ anticorrelating Langevin
force.

Usingthequasicanonicaltransformationtodensityvariablesk+=1+k̂=
exp(ñ) and k=n exp(−ñ), we find

Lreact=a(1−exp(−ñ)) n+b(1−exp(ñ)) n+c(1−exp(−ñ)) n2

=(a−b) ñn+ñ 1cn−
a+b
2

ñ2 n+· · · (D6)

Thus Lreact has the same form irrespective of using of density variables
or creation-annihilation variables. This shows the equivalence of both
approaches as long as a % b ] 0. If the spontaneous decay rate a is zero, b
vanishes at criticality and one is forced to expand the exponentials to
higher order terms. However, a further analysis reveals that then the
scaling dimension of ñ is zero and the expansion of the exponentials is not
allowed. One has to resort to the creation-annihilation variables. A naive
expansion up to the quartic term −cñ2n2 produces a wrong sign of this
noise term. This demonstrates that one can use a density description only
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as long as spontaneous decay is non-zero. Furthermore, the transformation
of the diffusion term Nk̂ Nk to density variables leads to a term propor-
tional to n(Nñ)2 in the action L (D4). This term represents diffusion noise
and is only relevant if the spontaneous decay rate is zero.
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